Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Int ; 100: 102863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38272301

RESUMO

Leishmania, a protozoan parasite, is responsible for the occurrence of leishmaniasis, a disease that is prevalent in tropical regions. Visceral Leishmaniasis (VL), also known as kala-azar in Asian countries, is one of the most significant forms of VL, along with Cutaneous Leishmaniasis (CL) and Mucocutaneous Leishmaniasis (ML). Management of this condition typically entails the use of chemotherapy as the sole therapeutic option. The current treatments for leishmaniasis present several drawbacks, including a multitude of side effects, prolonged treatment duration, disparate efficacy across different regions, and the emergence of resistance. To address this urgent need, it is imperative to identify alternative treatments that are both safer and more effective. The identification of appropriate pharmacological targets in conjunction with biological pathways constitutes the initial stage of drug discovery. In this review, we have addressed the key metabolic pathways that represent potential pharmacological targets as well as prominent treatment options for leishmaniasis.


Assuntos
Leishmania donovani , Leishmania , Leishmaniose Cutânea , Leishmaniose Mucocutânea , Leishmaniose Visceral , Leishmaniose , Animais , Leishmaniose/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Ásia
2.
J Mol Recognit ; 36(7): e3021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092713

RESUMO

Visceral leishmaniasis (VL) is caused by Leishmania donovani (Ld), and most cases occur in Brazil, East Africa, and India. The treatment for VL is limited and has many adverse effects. The development of safer and more efficacious drugs is urgently needed. Drug repurposing is one of the best processes to repurpose existing drugs. Ornithine decarboxylase (ODC) is an important target against L. donovani in the polyamine biosynthesis pathway. In this study, we have modeled the 3D structure of ODC and performed high-throughput virtual screening of 8630 ZINC database ligands against Leishmania donovani ornithine decarboxylase (Ld ODC), selecting 45 ligands based on their high binding score. It is further validated through molecular docking simulation and the selection of the top two lead molecules (ceftaroline fosamil and rimegepant) for Molecular Dynamics (MD) simulation, Density functional theory (DFT), and molecular mechanics generalized born surface area (MMGBSA) analysis. The results showed that the binding affinities of ceftaroline fosamil, and rimegepant are, respectively, -10.719 and 10.159 kcal/mol. The docking complexes of the two lead compounds, ceftaroline fosamil, and rimegepant, with the target ODC, were found stable during molecular dynamics simulations. Furthermore, the analysis of MMGBSA revealed that these compounds had a high binding free energy. The DFT analysis showed that the top lead molecules were more reactive than the standard drug (pentamidine). In-silico findings demonstrated that ceftaroline fosamil, and rimegepant might be recognized as potent antagonists against ODC for the treatment of VL.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Inibidores da Ornitina Descarboxilase/química , Inibidores da Ornitina Descarboxilase/farmacologia , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Ornitina Descarboxilase/química , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/farmacologia , Ligantes , Leishmania donovani/metabolismo
3.
Med Chem ; 19(5): 413-430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36200254

RESUMO

Pathogenic bacteria, with their innate resistance to drugs, pose a constant threat to human health and well-being and put a persistent strain on the health care system. Development of more effective and safer novel antibacterial drugs is warranted to counter the menace unleashed by pathogenic bacteria. Integration of privileged pharmacophores from various bioactive molecules into a single template is a promising strategy to obtain new leads with unique mechanisms of action to overcome drug resistance. In the past few years, numerous isatin-based hybrid molecules were screened and their pharmacological properties were explored in efforts to develop novel therapeutics. The results of screening show that isatin conjugates exhibit promising activity against a broad range of highly pathogenic gram-positive and gram-negative bacteria and can serve as important leads in the discovery of highly potent broad spectrum antibacterial drugs. Herein, we review the antibacterial bioactive profile of a variety of hybrid isatin derivatives, including isatin-azole, isatin-quinoline/ quinolone, isatin-furan/coumarin, isatin-hydrazone/(thio)semicarbazone, isatin dimers, and isatin- indole hybrids.


Assuntos
Antibacterianos , Isatina , Humanos , Antibacterianos/farmacologia , Isatina/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
4.
Future Med Chem ; 12(8): 709-739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32208986

RESUMO

Aim: Phenanthridines are an essential class of nitrogenous heterocycles with extensive applications in medicinal chemistry. The development of efficient and eco-friendly methods for the preparation of chirally pure dihydropyrrolo[1,2-f]phenanthridines (5a-h), and their in vitro evaluation and modeling studies as potential anticancer, antioxidant and DNA cleavage agents is reported. Methodology & results: Compounds 5a-h were prepared through a facile one-pot synthesis and characterized by infrared, high resolution mass spectrometry, 1H and 13C nuclear magnetic resonance. The molecules were subjected to virtual screening and docking analysis against selected human molecular targets. Compound 5g displayed good binding properties as well as significant anticancer and DNA cleavage activity. Conclusion: Compound 5g has been identified as a potential lead candidate for further testing against additional cancer cell lines and animal models in future.


Assuntos
Antineoplásicos/farmacologia , Fenantridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clivagem do DNA , DNA Bacteriano/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenantridinas/síntese química , Fenantridinas/química , Células Tumorais Cultivadas
5.
J Mol Graph Model ; 81: 211-228, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29609141

RESUMO

This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect. Molecular docking was performed with vascular endothelial growth factor receptor-2(VEGFR2) and glutathione S-transferase-1 (GSTP1) because both are common cancer causing proteins. Sunitinib and Doxorubicin possess great affinity to inhibit these cancers causing protein. Self-organizing map (SOM) was used to depict data in a simple 2D presentation. Our studies justify that good oral bioavailability and therapeutic efficacy of 10, 12-19 and 22-27 compounds can be considered as potential anticancer agents.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Compostos Heterocíclicos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Barreira Hematoencefálica , Linhagem Celular , Permeabilidade da Membrana Celular , Absorção Gastrointestinal , Compostos Heterocíclicos/farmacologia , Humanos , Ligantes , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...